
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD437763

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; MAR 1964. Other
requests shall be referred to Defense Advanced
Research Projects Agency, Washington, DC 20301.

rand ltr via darpa dtd 31 mar 1966



Ad 

UK CLASSIFIED 

437763 

DEFENSE DOCUMENTATION CENTER 
FOR 

^lENTIF.C AND TECHNICAL INFORMATION 

CAHCIOM STATION. ALEXANDRIA. VIRGINIA 

U> CLASSIFIED 



NOTICE: When govemnent or other drawings, epecl- 
ficatlons or other data are used for any purpose 
other than In connection with a definitely related 
government procurement operation, the U. S. 
Government thereby Incurs no responsibility, nor any 
obligation whatsoever; and the fact that the Govern- 
ment may have fomulated, furnished, or in any way 
supplied the said drawings, specifications, or other 
data is not to be regarded by impllcatiou or other- 
wise as In any manner licensing the holder or any 
other person or corporation, or conveying any rights 
or penuisslon to manufacture, use or sell any 
patented invention that may in any way be related 
thereto. 



00 
CO 
l> 

CO 

MEMORANDUM 
RM-3963-ARPA 
MARCH 1964 

ARPA ORDER NO. 189-61 

L     l 

CQ 
O 

«. 

437763 
I 

PLANE PHASED ARRAYS: 
DEPENDENCE OF GAIN ON 
STEERING, THINNING AND 

ELEMENT DIRECTIVITY 
Worthie Doyle 

: 

PREPARED FOR: 

ADVANCED RESEARCH PROJECTS AGENCY 

Tfe m\) ßonfwatiött 
SANTA   MONICA  •   CALIFORNIA  

I 

V^ oi^s* 



ARPA OBDBR NO. 188-61 

MEMORANDUM 
RM-3963-ARPA 
MARCH 1864 

PLANE PHASED ARRAYS: 
DEPENDENCE OP GAIN ON 
STEERING, THINNING AND 

ELEMENT DIRECTIVITY 
Worthie Doyle 

This research is supported by the Advanced Research Projects Agency under Contract 
No. SD-79. An/ views or conclusions contained in this Memorandum should not be 
interpreted as representing the official opinion or policy of ARPA. 

DDC AVAILABILITY NOTICE 
Qualifu-d requesters may obtain copies of this report from the Defense Documentation 
Center  (DDC). 

nwrn -7& K-H 11 L/d<«^*<w<«*<«« 
l?00   MAIN    SI    •   SANTA   MONICA   •   CAllfOBNI, 



vv 

iii 

PREFACE 

In this Memorandum the dependence of plane array gain upon 

thinning, steering and element directivity is discussed and a 

systematic way to avoid grating lobes in highly thinned arrays is 

introduced. The ideas are illustrated by some detailed examples. 

The Memorandum should interest people designing thinned, elec- 

tronically steered, plane arrays for modem radars. 



Two related topics in the design of plane phased arrays are 

discussed. Ode is the dependence of gain upon thinning, steering 

and element directivity; the other is a systematic procedure for 

locating the elements of highly thinned, plane arrays. 

A few general observations on the effects of thinning and 

steering can be made from the expression for the gain of an array 

of elements having an arbitrary directivity factor. The speciali- 

zations to Isotropie elements and to infinitesimal dipoles are then 

made and these observations are verified for some actual arrays. 

A systematic way to randomize element locations in a thinned 

array while still approximating seme basic excitation taper is 

also suggested and illustrated. The thinning scheme is baaed on an 

equal area approximation to a continuous excitation distribution, 

with the equal areas being laid out in the form of an expanding 

spiral. This procedure insures against accidental element align- 

ment in any particular direction. Its effectiveness is shown by 

applying it to a 100-element array and plotting several sections 

of the resulting directivity pattern. 

.v^._ 
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I. IMTRODUCTIOM 

Two related topic in the design of plane phased arrays are 

discussed. One is the dependence of gain upon thinning, steering 

and element directivityj the other is a systematic procedure for 

locating the elements of highly thinned, plane arrays. 

A few general observations on the"effects of thinning and 

steering can be made from the expression for the gain of an array of 

elements having an arbitrary directivity factor. The specializations 

to Isotropie elements and to infinitesimal dipoles are then made and 

these observations are verified for some actual arrays. 

A systematic way to randomize element locations in a thinned 

array while still approximating some basic excitation taper is also 

suggested and illustrated. The thinning scheme is based on an equal 

area approximation to a continuous excitation distribution, with the 

equal areas being laid out in the form of an expanding spiral. This 

procedure insures against accidental element alignment in any par- 

ticular direction. 

The dependence of gain on element spacing has been described by 

Milazzo and D'Angelo^  for the case of a uniformly spaced, broadside 

(2) 
linear array. Bickmore   considers a square current sheet, linearly 

polarized parallel to one side of the square. For steering around 

the axis of polarization he derives the dependence of 3 db bearawldth 

on steering and shows that the cosine approximation for effective 

aperture holds to within a beamwidth or so of endfire. Von Aulock's 

expository article contains similar material on the beamwldths for 
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electronically steered rectangular arrays with unifom spacing. 

Although results like those in Ref. (l) are easily demonstrated for 

plane arrays also, the facts are apparently not universally appreci- 

ated. One difficulty is the number of parameters whose effects are 

to be disentangled and separately accounted for. In this Memorandum 

the effects will be discussed in connection with the detailed example 

which occupies about half the pages. Although some qualitative 

statements can be made from the general expression for gain, the 

actual fluctuations in gain as a thinned array is steered will depend 

strongly on the array configuration itself. For instance, a square 

array with unifom spacing of a wavelength or so would have very wide 

gain fluctuations, while the example to be considered has relatively 

mild gain fluctuations with steering. 

The example  also furnishes a convenient way to introduce a new 

approach to the problem of spurious main lobe reduction in highly 
(1*) 

thinned plane arrays. The approach of King, Packard and Thomas 

is essentially intelligent cut-and-try. Baklanov, Pokrovski, and 

Surdutoviclr" apply a Newton-Raphson iterative procedure to solve 

for the locations of the N elements of a symmetrical linear array 

(6) 
whose first [N/2] side lobes have a pre-assigned level. Andreasen 

has also used an iterative procedure to deduce element distributions 

for which the nearest grating lobes or other large lobes are held 

down to a level appropriate to the number of elements. All three 

papers are concerned with linear arrays. For plane arrays or arbi- 

trary volumetric distributions there have been some statistical 

(7) 
analyses of large random sets of radiators. Cover's Memorandum 
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is typical, though not directly concerned with spurious lobe re- 

duction. Moher and  Cheng   consider the statistical effects of re- 

moving a relatively snail number of elements from a linear array. 

The only reported explicit synthesis of a thinned, plane array seems 

(9) to be that of Willey.    The method used in this Memorandum is very 

close to Willey's, which is based on the idea of approximating a 

continuous aperture distribution with a disciete array of equal 

radiators by partitioning the continuous distribution into areas of 

equal weight and assigning a radiator to each such area. 

It differs from Willey's in providing a nearly automatic assign- 

ment of element locations without the need to make individual choices 

by hand from a small number of possibilities. 

'.ft«*^ftMgt?*   ^ ^l««,.*.    K* I 



II. GAIN OF PIAME PHASED ARRAYS 

Let N radiators te located at points, Pk, in the equatorial 

plane, 9 = «/2, of a spherical coordinate system (see Fig. l). The 

locations will be specified in either rectangular coordinates, 

(x. ,y ), or polar coordinates, (^»«pj^), as convenient. Let the 

0 .. (To anywhere) 

Fig. 1~ Coordinates 



amplitude and phase of the excitation of the k  element be a. and 

to., so that the complex excitation is given by or. = a. exp(ib ). 

Consideration will be restricted to cases describable by a 

scalar or one-dimensional analysis. These include acoustic radiators 

and linearly polarized electromagnetic radiators, where the far field 

contains only a single component. In particular, parallel linearly 

polarized current elements or parallel dipoles are covered. 

The distant field in an arbitrary direction is then proportional 

to 

■ 

r    ib +2ni(rv,A)sin 9 co8(<p-Ä ) 
VO^) = E(9^) \ ak e 

k    ll ^      (l) 

k=l 

E(e,(p) is the element directivity factor, assumed to be the same for 

all elements. The phase reference has been taken to be the origin, 

0, of the coordinate system and the factor (rk/X) sin 9 cos({p-«a ) 

is simply the number of wavelengths in the projection of OP. onto 

0D. A pencil beam with a maximum in the direction (0 ,o ) will be 
o To 

formed if the excitation phases, b. , are so chosen as to annihilate 

each exponent in the direction (9 ,tp ). This choice is 

^k " ■2lf(ri/X) 8in eo c08^o " ^ ^ 

The gain in any direction, (9,»), is the ratio of intensity 

at (9,o) to the average intensity over all directions: 

cXe,,) . 1   Jffiri 
HüJ v(9,<p)r du 

n 

■       . :  ■■■■ .,..■ ■.■   .    ■   . 
, 
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where jV ... dtu indicates Integration over the sphere. Gain, G, 

without qualification, will mean G(9 ,M )> the gain in the direction 

of the beam maximum. This gain is given by 

K   I        ,2.   -* lE(e ,<p )r | E aJ7G vf Ism e|de ,r |v(e,v)rcUpAn 
0 0    k=l K     o        -« 

N-l  N       i(Vbl)      N  2 
Re E   E 2a a e    J I,,, + 2 a^ L^ 

j=l k=J+l jnt       Jk  k=l ^ " 
(3) 

where 

«        n 2«i sin ST  cos(   ).r Co8(»^pj] 
Ijk - J |sin llg J • ^^^ k   V^l j      j J^^, dtp 

depends only upon the element locations and the element directivity 

factor. Notice that 

d9 
1^ = 1 Isinel^.r \*i9,9)\% (5) 

is merely the average element factor. 

V/hen the element factor, E(9,(p), has the twofold synmetry 

|E(6,(p)| = |E(e,-p)| = |E(e,cp+«)l, as is the case for the examples to 

be considered, I , is real and Eq. (3) becomes 
JK 

lE(eo,Wo)1
2| Eakl

2   ^  N 
k=l = 2 E   S a a cos(b -b ) I 

i=l  k-J+1 ^ ^    K J  JK 

N  2 
+ k=Sl ^ ^ (6) 

i 



3WAMPIMG OF EUSMEMT DIRECTIVITy WHEN THERE IS NO THIMNIMG 

The gain of a phased array will change as the beam is steered 

about. Various factors contribute to this change. In this section 

evidence is given that the element factor has little effect on the 

variation of gain with steering whenever the array is producing a 

sharp beam and is not thinned. In Section IV these assertions are 

verified by comparing the variations of gain with steering for two 

arrays, one of Isotropie elements and the other of Infinitesimal 

dipoles. 

The quantity lv(e,«p)| of Eq. (3) is the product of the squared 

magnitudes of the array factor 

ACe,*) 
£    2jd.(rk/X)8in 9 cos^-t^) 
) or. e 

k=l 

and of the element factor, E(e,«p). In terms of A and E, Eq. (3) may 

be rewritten as 

de |E(e ,Vo) A(eo,,po)17G = r Ism elg f |A(l,f)r|KM)rdf  (7) 
o        -n 

Suppose the element directivity is a slowly varying and not very 

peaked function of position. For example, if the elements are 

parallel infinitesimal dipoles the element factor is |E(9,ip)| = 

sin or, where or is the angle between the direction (e,«p) and the axis 

of a dipole. This pattern, in three dimensions, looks like a smooth, 

holeless doughnut. When the pencil beam Is very sharp and does not 

come near a null of the slowly varying element factor and when most 

of the volume inside the array factor is the volume directly under 

■m ■■■■■■■ ■ ■ 
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the peak, then a close approximation to the Integral In Eq. (?) is 

obtained by setting E(9,(p) = E(9 ,9 ), its value at the peak of 

A{8,cp), whereupon E(e ,9 ) cancels out of Eq. (7). 

Even if the total sidelobe volume of A is not negligible there 

is another effect that reduces the dependence of gain on the element 

factor: the contribution to the integral from outside the peak of 

A stays roughly constant as the beam is steered around. Denote this 

2 2 _2 2 
contribution by E1 kAl - B), where E^^ A- is an average value outside 

the peak of A and where B is the fraction of space occupied by the 

peak of A. Then Eq. (?) may be written as 

^A - E^(l - B) ♦ B E* A* 

or 

_2 2 
1 K 4 
G E2 A2 

o o 

The variation of G is produced mainly by the varia!ion of E . To 

_2 2 2 2 
the extent that Er A-/E   A < B the variation in the second term 

will be dampened by the first term, B. The two terms will be about 

equal when half the energy is radiated into the sidelobes, but even 

in this case the constant B will roughly halve the variation of 0 

with E . ' 
o 

EFFECT OF THINMING ON GAIM VARIATION WITH STEERING 

A closely spaced array approximates a continuously excited area. 

For both these cases gain is proportional to cos 9 for angles, 9 , 

, 



not too far from the perpendicular. For videly spaced arrays, 

however, this cos 90 factor will disappear. To see why this should 

be so, consider the two parts of Eq. (6). L. is a constant and 

hence the second term is Independent of spacing or steering. In the 

first term, when spacing is large the angles b. will contain many 

cycles so that the oscillating factors, cos(b " b.), are equally 
K    J 

likely to be positive or negative. There will be some fluctuation, 

but the average value of the first term will be zero. Thus for wide 

spacing, gain is approximately 

wvXjU)2 

This clearly does not vary as cos 8 . Since I , from Eq. (5), is 

the average of |E(9,(p)| , it follows that 

the gain of the element factor in the direction (9 ,9 ). Thus for 

wide spacing the gain 

r N     >2 

0 - GJ9 >*J  ' ex o'^o'   N  9 

k=l K 

is simply a constant times the element gain in the direction of 

steering. 
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The argument of the preceding section said that element gain 

should be swamped. This section says gain follows the element factor. 

However, there is no contradiction, since the case of extreme thinning 

is precisely the case for which E^ A^/Eo Ao is greater than B. All 

these remarks are checked for the particular examples computed in 

Section IV. In summary, when spacing is close, the element factor 

is unimportant and gain varies with steering as cos 90 out to a 

couple heamwidths away from  the equatorial plane; when spacing is 

great, the variation of gain with steering follows the element gain. 

GAIN IF ELEMENT FACTOR IS UNIFORM OVER A HaCSPHEBE 

Let 

( 1 if 0 « 9 < «/2 
E(9,(p) = { 

( 0 if «/2 < e < n 

Such a radiator will be referred to as "isotropic" for short, even 

though its effect is confined to a half-space. 

From Eq.  (h) 

/« 2Ki sin 9  ,      „«./« *    \ 

f    sin efif   e      X ** JK     d* (8) 

«/2 . .       i 
=  f    sin 9 J (2it(d.. A)  sin 9) d9/2 

o o JK 



sln(2« d1kA) 
(8) 

(cont'd) 

where 

ä% = rk + rj " 2rjrk C08K^j) ■ (vxj)2 + (vyj)2 

is the squared distance between the J-th and k-th elements. 

When j = k 

I  -i 
kk  2 

From Eq.  (3) the gain is given by 

Tc y       N-l     N 
r N    N 

k=l 8in(2jtd,./X)      .    M 
E       Z   a ^   co8(b -b )       "  jl  + ?   ^   \ 

(9) 

(io) 

An important special case is a    =   ...  = a^ = 1; then 

N i +
1 "E1 I c3S(b b £¥S£1 (ii) 

Some examples for this case appear in Section IV. For wide spacings 

the tenns of the double sum go down because of the divisor d... They 

also tend to cancel each other in a random way because of the large 

and irregular values of (b,-b ), Hence for wide spacings G *> 2N. 
K  J 

The factor 2 results from choosing elements that radiate "isotropically" 

into a hemisphere. 
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GAIN FOR DIPOLES RADIATING IMTO A HEM SPHERE 

The infinitesimal dipoles are taken to lie parallel to the x- 

2    2 \ 
axis. The element factor is then (l - cos tp sin 9) in the northern 

hemisphere, 0 s 9 s jt/2, and vanishes in the southern. For the calcu- 

lation of I . see the Appendix. The result is 
JK 

E 

+ c062w[^(3ip.cosz).Sip]      (12) 

where 

z - 2K d,./X (13) 

and 

(x^ - x ) - (y - y ) 
cos 2W = -^ J p-^ J— d1*) 

When J = k 

Gain for this case is given by Eq. (3), with IJk and 1^ given by 

Eqs. (12) through (15) and with |E(90,<p0)|
2 = 1 - sin 90 cos «p0. 

For the special case of equal excitation, a1 = a2 = ... ■ «g ■ 1| 

the gain is given by 
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2    2 
1-sin eo cos (po 

"GTN" 

.  c N-l  R 
i + |  Z  E I  co8(b-b ) (16) 

Some examples for this case also appear in Section IV, where 

the behavior of gain with thinning and steering is compared with the 

corresponding behavior for elements with uniform radiation over a 

hemisphere. 
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III. DISCRETE APPROXIMATION CF APERTURE EXCITATIONS BY SPIRALS 

Consider a plane array intended to produce a steerable pencil 

beam. The beam shape and gain will depend on the distribution of 

elements over the area of the aperture and on the aperture size. The 

beamwidths will depend mainly on the aperture diameters, while the 

relative distribution of elements will determine the sidelobe levels 

and will also determine whether spurious main lobes arise. The 

general behavior of near sidelobes can be controlled by making the 

element distribution approximate a continuous excitation having a 

known, and acceptable, set of sidelobes. For example, a suitable 

continuous excitation can be divided into areas of equal total ex- 

citation and an element of a discrete array assigned to each such 

area. 

The actual partitioning of the illumination into equal incre- 

ments can be done in many ways. For example, a square aperture can 

be divided into a regular array of rectangles and an element assigned 

to each rectangle, if a unifonn excitation is to be approximated. 

When such a regular array is used, spurious lobes arise as soon as 

the spacing exceeds one wavelength. By randomizing the spacings, 

such lobes can be decreased. The general objective is so to space 

the elements that the distribution of their projections on any line 

is always irregular. This inmediately suggests basing the distri- 

bution on a set of uniform distributions on circles, since circles 

already are free from preferred directions. If an annular region is 

to be occupied by a fixed number of elements, it would presumably be 

divided evenly and an element assigned to each equal part, perhaps 
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being randomly displaced inside its assigned area. The rings could 

be rotated with respect to one another so that no strongly lined-up 

elements formed spokes. 

From the above discussion it is only a short Jump to the idea of 

dividing the continuous excitation into equal pieces by winding out 

from the center in a spiral strip. The spiral strip will then be 

divided into roughly square pieces, each to be represented by one 

element of the final array. If the array is to approximate a con- 

stant excitation, then the spiral strip will soon reach a nearly 

constant width. If the illumination is to be tapered, then the strip 

should gradually widen as the spiral expands. Similarly, the spacing 

of elements along the strip would be even if a constant illumination 

is to be approximated, but would gradually increase if there Is to 

be a tapering at the edge. 

There is no guarantee that such a spiral plan for positioning 

the elements will not produce spokes, or even nearly parallel lines 

of elements. However, it seems probable that such accidents would 

be rare. 

DISC WITH CONSTAWT EXCITATION 

Consider the problem of placing a given number of elements 

inside a circle so that the spacing between elements is roughly 

uniform but so that the elements do not tend to fall on straight 

lines. Suppose the elements are evenly spaced along the arc of an 

expanding spired. After the spiral has grown a bit, the distance 

between successive elements on the spiral (chord or secant) will 
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soon be veiy nearly the sane as the distance along the arc, hence 

choosing equal spacing along the arc guarantees roughly unifom spacing 

of elements in the 9 direction. The direction of the discrepancy will 

he such as to produce a slight tapering down as the outside of the 

array is approached, which is a discrepancy in the right, or helpful, 

direction (since it means slightly lower sidelobes). To detemine 

the spiral approximately, consider the relation between arc length, 

s, and radius, r. Let d be the constant distance between elements 

along the arc of the spiral; then the number of elements in length 

da will be ds/d. Suppose the radius grows by dr during the space ds. 

If a constant illumination is to be approximated, then the number of 

elements in an annulus of width dr should be proportional to the area, 

2nrdr, of the ring. Hence the spiral is given by 

ds = r dr/r (17) 

where r    is a proportionality constant.    Integrating Eq.  (l?) results 
o 

in 

r2 - r2 + 2r a o o 
(IB) 

From Eq. (lö) and ds2 - r2 dO2 + dr2 it follows that 

d9 = 
r + 2r s 
o   o 

or 

e^-tan-VfS 
o o 

(19) 
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Equations (ifl) and (19) are parametric equations of the spiral. 

Spacing elements equally along the arc means that the k-th element 

corresponds to parameter sk = (k - l)d, for k = 1, 2, ..., N, with 

the polar coordinates of the k-th element given by Eqs. (18) and 

(19). Let the outermost, or N-th, element lie at distance a from 

the center; thus a may be considered the radius of the roughly 

circular array. Then 

a2 - r^* 2ro(N - l)d (20) 

A choice for the starting radius, ro, has still to be mde. The 

area represented by an individual element will be roughly square if 

the distance between successive turns of the spiral is equal to the 

distance, d, between elements along the spiral. This will make the 

radial and tangential components of the interelement distances about 

the same. An approximate solution for this requirement is possible 

if the spiral has several turns. Near the outside the term 

tan y2s/ro is approximately ji/2 and can be ignored. From Eqs. (18) 

and (19), for two values of the parameter, t and s, corresponding 

to a cb'inge of 2n in fl 

2   2 
r ^o  2t (r-d)2.r£  0 o  2s 

and 

r  v r o    •'o 

1 
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.1 

and 

2s  r   r - d  _ 
— sa — - ——— «a all r       r r 
o   o    o 

d JO 2« r (21) 

The elements are located where ■. ■ (k - l)d. Take the N-th 

element at the outer radius, a; then 

a2 = r2 + 2r (N - l) 2« r 
o    o' 

or 

-v/l + MN - 1) 
(22) 

EXAMPLE--100 ELEMPTTS OVER A DISC 

If the outer radius is a = lk.1,  then r = ik.l/^/l+kn  (100-1) 

.kOO and d = 2rt r = 2.51. From Bqs. (iß) and (19) there result 

•V* 000k - l.Qhd (23) 

and 

ek =^/l2.57(k - 1) - Un'^y^.JTCk -D 

The 100 locations for this example are plotted in Fig. 2. They 

look uniformly distributed and not lined up in any particular 

direction. 

(2»0 
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•        *        #        . 

.        *        • 

. 

• • 

' •        # .        . 

• 

• • • • '        •        • 

Fig. 2      Spiral distribution approximating uniform excitation 

*      •       • 
• • •      • 

... 

• • * • • 
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It remains to discover the extent to which this arrangement is 

"randan" and has succeeded in avoiding big sidelobes when the average 

Interelement spacing ll made noticeably greater than half a wavelength. 

The pattern produced by 100 elements arranged as in Eqs. (23) and 

{2k)  is described in Section IV, along with the other numerical re- 

sults for this example. 
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IV. A DETAILED ILLUSTRATION 

ll 

To verify the conclusions of Section II an example is worked out 

in detail. The variation of gain with steering and spreading (or 

thinning) is found for the spiral array of Fig. 2, using both Isotropie 

elements and infinitesimal dipoles.  For no spreading, the gain 

varies with steering according to the well-known cos 9 approximation, 

while for great spreading the variation of array gain with steering 

follows the gain of the element factor. 

THE THmNIMS PARAMETER. 3 

Up to now, thinning or spreading has been discussed in a x-ough 

quantitative way only. Before any calculation can be done, the notion 

of thinning needs to be made exact. For a regular array whose elements 

lie at the intersections in a square grid, the spacing parameter would 

naturally be defined to be the mesh dimension in, perhaps, half wave- 

lengths. For the sort of irregular array presented by the spiral in 

this example, no such direct and simple definition is possible. 

Any definition of the spewing parameter, S, will always be 

somewhat arbitrary. The one to be given here has two merits: it is 

fairly natural, and it reduces to the "right" number for regular, 

rectangular arrays. Let A be the area of an array which is occupied 

Because there was assumed to be no radiation into the southern 
hemisphere, the results may be 3 db higher than might be expected. 
No special virtue inheres in infinitesimal dipoles; they just happen 
to be a convenient example for which to verify the assertions made 
about the effect of the element factor on the variation of gain with 
thinning and steering. 
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by N elements. Then the spacing (or thinning, or spreading) 

parameter, S, is defined as 

S - -^-ö (25) 

»U/s) 

The units are square halfwaves per element. A regular array of M 

elements, spaced K halfwaves, has S * K2, with K2 - 3 = 1 the nonnal 

or unthinned case. For an array which has been literally thinned 

(by removing elements mo« or less uniformly, while leaving the same 

area occupied), S is the factor by which the number of elements in 

the array has been reduced from the nonnal case of halfwave spacing. 

A question still to be setUed is what area does the spiral of 

Fig. 2 actually "occupy." For the results to be exhibited, the area 

occupied is taken to be a circle whose diameter is half a wavelength 

greater than the diameter of the spiral. The diameter of the spiral 

is the maximum distance, D^, between a pair of elements on the 

spiral. Adding the extra half wavelength reflects a belief that the 

sphere of influence of a simple radiator like a dipole extends out- 

warM about a quarter wavelength. The spreading factor for the spiral 

array is then 

S =  2Si_  
H X 

VARIATION OF GAIN WITH THIHMING 

Figures 3 and L are almost self-explanatory. For a beam steered 

from the north pole to the equator along longitude 0° the gain 

(nonnalized by N, the number of elements) is plotted vs 9 for values 

of the thinning parameter, S - 1,..., 8. Figure 3 is for so-called 
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Isotropie elements (uniform radiation over hemisphere), while Fig. k 

is for dipoles except that, again, radiation into the southern 

hemisphere was assumed zero. 

To show how well the cos 8 law is followed for the case 8-1 

the 3 db limit of the endfire beam has been sketched. Since the 

cos 6 rule would predict zero gain at 9 = 90°, it obviously cannot 

hold over the whole range. The example shows that the rule is closely 

followed out to within a beanwidth (endfire) of 90°. 

The approximation, cos 9, is shown for the unthinned case 

(S = 1), and the element factor is shown for the most thinned case 

(S = 8). For dipoles along OX, the element gain varies as cos2 9, 

which is the element factor plotted in Fig. k for S = 8. 

Figure 5 contains the same data as Fig. 3, but plotted against 

spacing factor for constant steering angle, 9. 

Figure 6 exhibits the variation of gain for a wide range of 

spacings when the beam is aimed broadside (9 = 0°). The solid curve 

is for Isotropie elements while the circles are for Infinitesimal 

dipoles. Note that at low S the gains are virtually identical, while 

as S increases the gains gradually come to differ by about 1.8 db, 

corresponding to the gain (3/2) of a dipole. 

COMPARISON CF SPREADINS AMD THII1NIHG 

All the results plotted in Figs. 3 through 6 have been for a 

fixed number (lOO) of elements. They therefore show the effects of 

spreading a fixed number of elements over a greater and greater area. 
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keeping the configuration similar to the original. What if the area 

were to be held fixed and a given distribution actually thinned by, 

say, halving and quartering the nuaber of elements? The answer to 

this question for the spiral example appears in Fig. 7- The three 

curves on the left are repeated from Fig. 3- The three curves on 

the right also correspond to spacing factors of S = 1, 2 and U, but 

these factors were produced by reducing the number of elements rather 

than by spreading 100 elements over a greater area. 

The cases considered fall in the most critical region of spacing- 

the transition region between no thinning and great thinning. Never- 

theless, the variations of gain with steering for these two kinds of 

thinning (increasing the area vs decreasing the number of elements) 

are in remarkable accord. 

FREEDOM OF ARRAY FACTOR FROM GRATIMG LOBES 

The detailed array factor, 

A(9,<p) = I exp[(2ni/X)rk[sin 9 cosU-^) - sin eo cosCp^)]} 

k=l 

for an array of equally excited elements may be written in either of 

the universal forms 

A(U,V) = I expf(2«i/X)[(xk//3)U + (yk//S)V]} 

k=l 

or 

A(M) = £ expf(2«i/X)(rk//S)Z cos^)] 

k=l 



29 

E 
C 

Ö 
o 

e 

6 

2 

0 

8 

6 

2 

0 
1 

8 

6 

4 

2 

0 

100 Elements 
variable areo 

S ■  I 

30 60 

30 60 

30 60 

ö0 Degrees 

* ■ 0° 

Isotropie elements 

90    0 

S ■ 2 

90    0 

S > 4 

Area = 100 square halfwaves 
variable number of    elements 

N 
1       T  
■   100 

^ k^ 
N 

— 

30 60 

30 60 

90     0 30 60 

80 Degrees 

90 

*v. N 
1  
i  50 

\ k 
N. 

  -— 

90 

N 
1  
' 25 

— --"■ ^ 

90 

Fig. 7 —Variation of gain with steering and thinning 



I 

where 

U - Z cos T - /3(8in 9 cos <p - sin 0o cos jp0) 

V = Z sin t = /S(8in 9 sincp - sin e0 sin «p0) 

The scaling x^/B, y^, tjA produces a normlUed set of 

eleoent locations for which the new spacing is one square hallVave 

per eleaent. A universal array factor may be computed in terns of 

the pair of variables (ü,V) or the pair (2,t). These pairs ««body 

both .teering and spreading variations. If S - 1 and the beam is 

ai^ed broadside (t, - 0), then |z| . 1 and -1 * Ü,V . 1 cover all 

possible points in real space. If there is to be steering down to 

eo - ,/2, then the nmges of U,V and Z must be doubled to account for 

all of real space and for steering as well. Finally, if there is to 

be thinning by the factor, S, then the ranges of U,V and Z are 

multiplied by a further /8. For example, if the arx*y of the example 

U to be fuliy steered and if thinning by a factor S = l6 is to be 

used, then the ranges of Ü,V and Z are 0 $ Z
2 - U2 + V

2 . <* or 

0 S Z . 8. Severel slices (t - 0°, 30°, 60°, 90°) were plotted for 

the arrey factor of the example and are shown in Figs. 8 and 9- I* 

addition a coarse survey of the array factor was made by computing 

it at a 101 by 201 grid of points in the rectangular interval 

0 * U 00, -50 i V s 50. The highest value encountered was 10.7 db 

down fro« the main beam. Allowing a factor of 2 for steering, it 

appears that this 100-element configuration may be free of grating 

10hes even when average interelement spacing is 12 wavelengths, though 

the survey calculations were not dense enough to guarantee that some 
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Fig.8—Slices of space factor of 100-element spiral 



Fig.9-Slices of space factor of 100-element spiral 
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Fig.9 —Slices of space factor of 100-element spiral 
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lobe has not been missed. The survey amounts to taking about one 

point for every three or four lobes, the samples being equally spaced 

while the lobe spacings are random. 

The purpose of this discussion is not to suggest that the par- 

ticular example presented is an outstanding array (after all, it has 

17 db nearby sidelobes), but rather to illustrate the success of the 

spiral layout in avoiding grating lobes when spread or thinned to an 

average interelenent space of 2X, with full steering. As a comparison, 

notice that a 10 by 10 square array with full steering will produce 

a grating lobe at X/2 spacing (at endfire it is bi-directional), and 

that its first sidelobe is 12 db down. The 17 db first sidelöbe of 

the example is about what one expects from a uniformly excited 

circular area. 
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Appendix 

I      FOR UffTHITESIMAL DIPOLES 
ijk ■  

The element factor for an infinitesimal dipole is sin A (in- 

tensity)* vhere A is the angle between the dipole axis and a vector 

to the distant point. If the dipoles axe all parallel to the x-axis, 

2 2    2 
then sin A = 1 - sin 9 cos p and 

n      * ^-linSTr coa^^p. )-r cosCp-p )"L   2   2. 
IJk. Jlsineldeje  X  Lk   ^  J     J -(l-sin^cos «,> 

Tte first step in evaluating Iik i
8 *<> rewrite the bracket in the 

exponent as 

LJk 

rkoo«(^-^)-r,eos(^-9j) = djit
C06^-*jk) 

where 

V = rk+ rj" 2PAC0,^J) = ^J + ^J5 

COS    V 
v ;08<pk - rJco^J    \-xl 

Jk Jk Jk 

sin y. 
yln^ - r3.tep3       yk - yj 

'J15        djk        QJk 

ShlTting the c; - integral by' an amount «jk gives 
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^ «   2«! sine d 

IJk = 2 J slnede Je     x ^^dy 
O -K 

JC 

2 n   2«! sine d   c 

2j8in3edeje     ^ Jl£       cosV^)^ 

2 
Ifow put 2co6 (9+*jk)- 1 ♦ 00829-0062^ - sin^lr^ and spUt one 

of the sin e factors into 8lno(l-cos2e).    The result Is 

it 
? «   2id. sine d 

Jk = 2 J smede J e    ^        ikCOB\ 

2 n   2nl sine d 

J (slne-slne cos2e )de J e     x Jk       dcp 

2 jt   2nl sine d    c 

" CC62*ik J sln3ede J e     X Jk       cos^pdcp 
0 -JC 

n 
2      n   2nl sine d 

' 8in2l|fJk J 8in39de J e  X    ^^^m^pdo 
o      -A 

The last Integral vanishes because the Integrand is an odd function 

of q,. The first two integrals simplify a bit, so that finally 



2 
I     = 2n J sine Jo(2i0lJkBlne/x)cle 

I 
+ 2« J sine cos 9 Jo(2itdJk8ine/x)de 

n 
2 

+ 2itcos2*     J sln36 J2(2fldJk8ine/x) 

Use has been made of the fact that 

in* 
I | eizco^ cos nep dtp = e    " 2 Jn(z) 

The three integrals in I.k are special cases (see Ref. 11, p. 373) of Jk 

B(a,b,Z) -  f Ja(Zsine)sina+1o oos^h do - ^^ Ja+b+l(
z) 

O 

Particular cases needed are 

.  1 
a = o , " - 2 

B(o,i,.) ■ ^i ^(" " 5 
sin z  cos z 

z     z 

.      1 
a = o , h = - £ 

,.   1 v  r(l/2) T  C^  sin z 3K- ö'z) " i^T Jl/2(^ = "i~ 2 z 
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and 

a * 2, b - - | 

B(2,- |,z) = I^|) j5/2(2) . ^ US- . C06 ,-) . 31^ 

lÄt ZJk a 2,tdJkA' then 

r .,  . sin z .            sin «.. _ cos2+    3 ^.^_Jk _ cos    N jk 1 

This expression is indeterminate for J = k (and hence z = o); how- 
Jk 

ever, its limit as z  -> o is 

r    .8« hk   T 

This value is also obtained directly from the basic formula: 
n 
2       « 

1^ = 2 J sine d6 J (l-sin2e cos2Cp)dCp = ^ 
o -n 

,', 
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